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Fat-Trees: Universal Networks for Hardware-Efficient 
Supercomputing 
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Abstract—This paper presents a new class of universal routing 
networks called fat-trees, which might be used to interconnect the 
processors of a general-purpose parallel supercomputer. A fat-
tree routing network is parameterized not only in the number of 
processors, but also in the amount of simultaneous commu­
nication it can support. Since communication can be scaled inde­
pendently from number of processors, substantial hardware can 
be saved over, for example, hypercube-based networks, for such 
parallel processing applications as finite-element analysis, but 
without resorting to a special-purpose architecture. 

Of greater interest from a theoretical standpoint, however, is a 
proof that a fat-tree of a given size is nearly the best routing 
network of that size. This universality theorem is proved using a 
three-dimensional VLSI model that incorporates wiring as a di­
rect cost. In this model, hardware size is measured as physical 
volume. We prove that for any given amount of communications 
hardware, a fat-tree built from that amount of hardware can 
simulate every other network built from the same amount of 
hardware, using only slightly more time (a polylogarithmic factor 
greater). The basic assumption we make of competing networks is 
the following. In unit time, at most 0(a) bits can enter or leave a 
closed three-dimensional region with surface area a. (This paper 
proves the universality result for offline simulations only.) 

Index Terms —Fat-trees, interconnection networks, parallel su­
percomputing, routing networks, universality, VLSI theory. 

I . INTRODUCTION 

MOST routing networks for parallel processing super­
computers have been analyzed in terms of per­

formance and cost. Performance is typically measured by 
how long it takes to route permutations, and cost is measured 
by the number of switching components and wires. This 
paper presents a new routing network called fat-trees, but 
analyzes it in a somewhat different model. Specifically, we 
use a three-dimensional VLSI model in which pin bounded-
ness has a direct analog as the bandwidth limitation imposed 
by the surface of a closed three-dimensional region. Per­
formance is measured by how long it takes to route an arbi­
trary set of messages, and cost is measured as the volume of 
a physical implementation of the network. We prove a uni­
versality theorem which shows that for a given volume of 
hardware, no network is much better. 

Unlike a computer scientist's traditional notion of a tret , 
fat-trees are more like real trees in that they get thicker 
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further from the leaves. In physical structure, a fat-tree 
resembles, and is based on, the tree of meshes graph due to 
Leighton [12], [14]. The processors of a fat-tree are located 
at the leaves of a complete binary tree, and the internal nodes 
are switches. Going up the fat-tree, the number of wires 
connecting a node with its father increases, and hence the 
communication bandwidth increases. The rate of growth in­
fluences the size and cost of the hardware as well. 

Most networks that have been proposed for parallel pro­
cessing are based on the Boolean hypercube, but these net­
works suffer from wirability and packaging problems and 
require nearly order η3/2 physical volume to interconnect η 
processors. In his influential paper on "ultracomputers" [27], 
Schwartz demonstrates that many problems can be solved 
efficiently on a supercomputer-based on a shuffle network 
[28]. But afterwards, Schwartz comments, "The most prob­
lematic aspect of the ultracomputer architecture suggested in 
the preceding section would appear to be the very large num­
ber of intercabinet wires which it implies." Schwartz then 
goes on to consider a "layered" architecture, which seems 
easier to build, but which may not have all the nice properties 
of the original architecture. 

On the other hand, there are many applications that do not 
require the full communication potential of a hypercube-
based network. For example, many finite-element problems 
are planar, and planar graphs have a bisection width of size 
O(Vn) , as was shown by Lipton and Tarjan [19]. Moreover, 
any planar interconnection strategy requires only 0(n) vol­
ume. Thus, a natural implementation of a parallel finite-
element algorithm would waste much of the communication 
bandwidth provided by a hypercube-based routing network. 

Fat-trees are a family of general-purpose interconnection 
strategies which effectively utilize any given amount of hard­
ware resource devoted to communication. This paper proves 
that for a given physical volume of hardware, no network is 
much better than a fat-tree. Section II introduces fat-tree 
architectures and gives the logical structure of one feasible 
implementation. Section III shows how communication on a 
fat-tree can be scheduled off-line in a near-optimal fashion. 
Section IV defines the class of universal fat-trees and in­
vestigates their hardware cost in a three-dimensional VLSI 
model. Section V contains several combinatorial theorems 
concerning the recursive decomposition of an arbitrary rout­
ing network, and Section VI uses these results to demonstrate 
that fat-trees are indeed a class of hardware-efficient univer­
sal routing networks. Finally, Section VII offers some re­
marks about the practicality of fat-trees. 

0018-9340/85/1000-0892$01.00 © 1985 IEEE 
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II. FAT-TREES 

This section introduces fat-trees as a routing network for 
parallel computation. The parallel computer based on fat-
trees that we present is somewhat arbitrary and is influenced 
by the various connection machine projects [5], [9], [11] con­
ceived at M.I.T. The computational model is not meant to be 
exclusive — the results in this paper undoubtedly apply to 
more general models. Moreover, arbitrary "engineering de­
sign decisions," which may not be the best choices from 
either a practical or a theoretical perspective, have been made 
in this description of fat-trees. Most of the choices influence 
the results by only a logarithmic factor, however, and do not 
affect the overall thrust of the paper—the universality theo­
rem in Section VI. 

The intuitive model for parallel computation that we use is 
a parallel computation engine composed of a set of processors 
interconnected by a routing network. The processors share 
no common memory, and thus they must communicate 
through the routing network, using messages. The job of the 
routing network is to see that all messages eventually reach 
their destinations as quickly as possible. 

A fat-tree FT is a routing network based on a complete 
binary tree. (See Fig. 1.) A set Ρ of η processors is located 
at the leaves of the fat-tree. Each edge of the underlying tree 
corresponds to two channels of the fat-tree: one from parent 
to child, the other from child to parent. Each channel consists 
of a bundle of wires, and the number of wires in a channel c 
is called its capacity, denoted by cap(c). The capacities of 
channels in the routing network are determined by how much 
hardware we can afford, a topic to be discussed in Section IV. 
The channel leaving the root of the tree corresponds to an 
interface with the external world. Each (internal) node of the 
fat-tree contains circuitry that switches messages between 
incoming channels and outgoing channels. 

Messages produced by processors are batched into deliv­
ery cycles. During a delivery cycle, a processor may send 
messages through the network to other processors. Some 
messages may be lost in the routing network during a delivery 
cycle. Thus, in general, at the end of the delivery cycle, 
acknowledgments are sent from the destination processor 
back to the source processor. Messages that are not delivered 
must be sent again in subsequent delivery cycles. 

The nodes of the fat-tree accomplish most of the switching. 
In order to understand their function, one must first under­
stand how the routing of messages is accomplished. A mes­
sage set Μ C Ρ x Ρ is a set of messages (i,j). If (ij) Ε Μ, 
then processor i has a message to be sent to processor j . (We 
omit details concerning the contents of messages and the 
handling of messages routed to and from the external inter­
face.) Routing in the fat-tree is basically easy since every 
message has a unique path in the underlying complete binary 
tree. A message going from processor / to processor j goes 
up the tree to their least common ancestor and then back down 
according to the least significant bits of j . Notice that at any 
node of the fat-tree, there are only two choices for the routing 
of a message. If it comes into a node from a left subtree, for 
example, it can only go up or down to the right. Thus, a bit 
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Fig. 1. The organization of a fat-tree. Processors are located at the leaves, and 

the internal nodes contain concentrator switches. The capacities of channels 
increase as we go up the tree. 

string of length at most 2 lg η is sufficient to represent the 
destination of any message. 1 

We shall consider communication through the fat-tree net­
work to be synchronous and bit serial. Messages snake 
through the tree with leading bits of a message establishing 
a path for the remainder to follow. Since some of the paths 
through the tree are longer than others, synchronization of the 
departures and arrivals of messages can be a bit tricky. Buff­
ering of messages by the sending processors is one solution 
to this problem. (As was mentioned before, there are many 
other engineering alternatives that lead to the same kinds of 
theoretical results reported here.) The differing lengths of 
paths in the fat-tree are actually a major advantage of the 
network because messages can be routed locally without 
soaking up the precious bandwidth higher up in the tree, 
much as telephone communications are routed within an ex­
change without using more expensive trunk lines. 

The messages in the network obey the bit-serial protocol 
shown in Fig. 2. The first bit is the Μ bit, which tells whether 
the remaining bits actually contain a message. Next come the 
address bits, which name the destination processor. The final 
field in the message format is the data themselves. As mes­
sages are routed through the network, each node uses the Μ 
bit to identify whether a wire carries a message, and it uses 
the first address bit to make a routing decision. A path is 
established through the node for a new Μ bit and the remain­
ing message bits to follow. The address bits are stripped off 
one by one as the message establishes a path through the 
network. 

A fat-tree node has three input ports, t/ 7, L 7 , and Rl9 and 
three output ports, U0, L0, and R0, connected in the natural 
way to the wires in the channels. Messages entering input 
port Li will go either to output port U0 or to output port R0. 
The logic of the switching circuitry in a node consists of three 
similar portions, shown in Fig. 3. A wire from an input port 
is fanned out towards the two opposite output ports. The Μ 
bit of each wire is then examined to determine whether the 
wire has a message. On the next clock tick, the first address 
bit is examined on both branches of the input wire. By ANDing 

'We use the notation lg η to mean max{l,log 2 n}. 
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Μ address data 

time 
Fig. 2. The format of bit-serial messages. The first bit that a switch sees is the 

Μ bit, which indicates whether an input wire actually contains a message. The 
address bits arrive bit-serially in subsequent time steps, and the message 
contents are last. 
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Fig. 3. The internal structure of a fat-tree node. A selector determines which 
messages are destined for an output port, and then a concentrator switch 
establishes disjoint electrical paths for as many of those messages as possible. 

the Μ bit with either the address bit or its complement, an 
Μ bit is determined for each branch by a selector. Next, the 
messages destined for an output port, which currently occupy 
many wires, are switched onto fewer wires by a concentrator 
switch. 

The job of the concentrator switch is to create electrical 
paths from those input wires that carry messages to fewer 
output wires. Obviously, if there are more input messages 
than output wires, some messages will be lost. In this case we 
shall say that the output channel is congested. We have 
already mentioned an acknowledgment mechanism that de­
tects when messages are lost due to congestion. 

For the time being, we shall assume that the concentrator 
switch has the following property. If there is no congestion — 
that is, the number of input messages does not exceed the 
number of output wires — then no messages are lost. The 
concentrator switch that we shall present in Section IV is a 
partial concentrator and does not have exactly this property, 
but it makes little difference to the theoretical results. This 
circuit has 0(m) components if there are a total of m incident 
wires, and it switches in constant time. Thus, the time re­
quired for an entire delivery cycle in a fat-tree of η processors 
is 0(lg n). 

Although we have described the general setting as an on­
line switching environment, this paper makes the simplifying 
assumption that the fat-tree nodes contain off-line circuitry, 
in that the switches, although dynamically set, have their 
settings predetermined by an off-line scheduling algorithm. 
Naturally, it would be better to dynamically determine the 
settings themselves in real time, and indeed, it is possible to 
build such on-line switches, but these results will be reported 
elsewhere [8]. We have chosen here to prove the weaker 
off-line results so as to simplify the presentation of the uni­
versality theorem in Section VI. 

There are several consequences of the off-line assumption 
that bear mention, however. For example, the results apply to 
practical situations when the settings of switches can be 
"compiled," as when simulating a large VLSI design or emu­
lating a f ixed-connection ne twork . Also , some of the 
mechanisms — such as acknowledging the receipt of mes­
sages, which is necessary in an on-line environment—can be 
omitted from the off-line hardware structure, thereby reduc­
ing the complexity of the design. 

III. OFF-LINE SCHEDULING ON FAT-TREES 

The concentrator switches in the nodes of a fat-tree routing 
network guarantee that no messages are lost unless there is 
congestion. This section gives an algorithm for scheduling 
the delivery of an arbitrary set of messages so that all mes­
sages will be delivered. We give a simple value, called the 
load factor of a set of messages, which provides a lower 
bound on how quickly the messages can be delivered. We 
show that for an arbitrary message set, off-line scheduling 
can be done optimally to within a logarithmic factor of the 
number of processors. 

Let us be more precise about the off-line scheduling prob­
lem. Let FT be a fat-tree on η processors, and let C be the set 
of channels in FT. For any channel c E C , the capacity 
cap(c), which is the number of wires in the channel, is also 
the maximum number of simultaneous messages the channel 
can support because we are assuming bit-serial communica­
tion. Since each message between two processors determines 
a unique path in the underlying complete binary tree, we can 
define load(M, c) to be the total number of messages in a 
message set Μ that must go through channel c. We call Μ a 
one-cycle message set if load(M, c) < cap(c) for all channels 
c Ε C . If all capacity constraints are met, a fat-tree with 
ideal concentrator switches can route every message in one 
delivery cycle. 

A schedule of a message set Μ is a partition of Μ into 
one-cycle message sets MUM2,'' ' ,Md where d is the total 
number of delivery cycles. A simple lower bound on d for an 
arbitrary message set Μ is d > max c (load(M, c)/cap(c)), 
which leads to the following definition. 

Definition: Let Μ be a message set, and let c Ε C be a 
channel in a fat-tree. The load factor λ(Μ, c) of a channel c 
due to Μ is 

λ(Μ, c) 
load(M, c) 

cap(c) 

and the load factor of the entire fat-tree due to Μ is 

λ(Μ) max λ(Μ, c ) . 
cEC 

A message set Μ is a one-cycle message set if λ(Μ) < 1. 
The simple lower bound on the number d of delivery cycles 

required for any schedule of Μ can now be reexpressed as 
d > λ(Μ). The next theorem shows that this lower bound 
can be achieved to within a logarithmic factor of n. 

Theorem 1: Let FT be a fat-tree on η processors, and let 
C be the set of channels in FT. Then for any message set Μ 
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with λ(Μ) > 1, there is an off-line schedule M]t M2, · · ·, Md 

such that d = 0(λ(Μ) lg η). 
Proof: The idea is to partition the messages going from 

left to right through the root of the fat-tree into at most 2λ(Μ) 
one-cycle message sets, to do the same for the messages 
going from right to left, and then to recursively partition the 
messages in the two subtrees of the root. Let Q x be the subset 
of Μ consisting of those messages that must go through the 
root from left to right. The scheduling algorithm will begin 
by partitioning Q x into two message sets Q 2 and Q 3 . It then 
iteratively refines each Qk into Q2k and <2 2*+i, until each Q k , 

k = r, · · · , 2r - 1 is a one-cycle message set for some 
r < 2λ(Μ). The r message sets Q r , · · · , Q 2 r - \ form the initial 
sequence of the schedule. 

The algorithm similarly partitions the message set con­
sisting of messages going from right to left in the fat-tree and 
adds them to the schedule. (Each of these message sets can, 
in fact, be routed at the same time as one of the Q k . ) Finally, 
the algorithm recursively partitions the messages remaining 
within the two subtrees of the root. The upper bound of 
2λ(Μ) one-cycle message sets holds for all messages routed 
through the root of a subtree. But since all subtrees with roots 
at the same level can be routed at the same time, the total 
number of delivery cycles required is at most the height of 
the fat-tree times the time for one level, which yields 
d = 0 (λ (Μ) lg n). 

It remains to show that the message sets can be partitioned 
effectively. Consider once again the message set Q x of mes­
sages going left to right through the root of the fat-tree. We 
now show that each message set Q k , k = 1,2, · · · , r - 1, 
can be partitioned into Q2k and Q 2 k + l so that for every channel 
c Ε C, the messages of Q k that go through c are split exactly 
evenly, that is, so that load(g 2*, c) < Γ Ο / 2 ) l oad^* , c ) l and 
load(<22*+i, c) ^ Γ (1 /2) loadC^ , c ) l . The partitioning con­
sists of two parts, matching and tracing, and is reminiscent of 
switch setting in a Benes network [34] and the Eulerian tour 
routing algorithm from [10]. 

First, do the matching. Consider each message in Q k as 
being a string with two ends: a source end and a destination 
end. Within each processor, match as many pairs of string 
ends as possible until at most one message of Q k is unmatched 
within each processor. Notice that source ends are matched 
only with source ends and destination ends only with desti­
nation ends because all messages in Q k go left to right through 
the root. Then consider two-leaf subtrees. If each of the two 
leaves has one unmatched string end, match the ends. Con­
tinue matching the unmatched string ends in four-leaf sub­
trees, and so on up the fat-tree. At every level of the fat-tree, 
at most one string end is unmatched in each of the two sub­
trees of a node. At the root, at most one string end from each 
side will be unmatched (when there is an odd number of 
messages going from left to right through the root). 

Now the tracing phase begins. If there is an unmatched 
string end in the left subtree, start with it. Otherwise, pick a 
string end arbitrarily from the left subtree. Put the corre­
sponding message into Q 2 k , and follow the string to the right 
subtree. Find the mate of the string end on the right side, and 
put the corresponding message into Q 2 k + \ . Follow this new 
string back to the left side, find its mate, and put the corre­

sponding message into Q 2 k . In general, when traversing a 
string left to right, put the corresponding message into Q 2 k . 
When traversing right to left, put the message into Q2k+\. If 
we discover that a string end has no mate, or that the message 
corresponding to the mate has already been assigned, we 
have either found the (one) unmatched string end on the right 
or completed a cycle. In either event, pick another string end 
arbitrarily and continue until all messages in Q k have been 
assigned either to Q2* or to β 2*+ι· 

To see that this algorithm evenly splits the messages of Q k 

in every channel c, observe that the number of times we enter 
a subtree of the fat-tree is equal to the number of times we 
leave, unless we are tracing the one possible string end 
matched outside the subtree. Since the split is even in every 
channel, the partitioning of Q Y into one-cycle message sets 
Q r , ' ' ' , Qir-\ will be achieved when 

load(g! ,c ) 
r < 2 max — — 

c cap(c) 
load(M, c) 

< 2 max —— 
c cap(c) 

< 2 λ ( Μ ) , 

which completes the proof. • 
For the special case when cap(c) > a lg n, for some 

a > 1, the logar i thmic factor in the upper bound of 
Theorem 1 can be removed. Thus, under these conditions, 
the lower bound of the load factor can be met almost exactly. 

Corollary 2: Let FT be a fat-tree on η processors, let C be 
the set of channels in FT, and suppose that there is a constant 
a > 1 such that cap(c) > a lg η for all c Ε C. Then for any 
message set M, there is an off-line schedule MhM2, · · · ,Md 

such that d = 0((a/a - 1)λ(Μ)). 
Proof: For each channel c Ε C, define a set of fic­

titious capacities cap'(c) = cap(c) — lg n. The fat-tree with 
the f i c t i t ious c a p a c i t i e s has a load fac tor λ ' ( Μ ) < 
(a I a — 1)λ(Λί). Now use the scheduling algorithm of Theo­
rem 1, but during the recursion on lower levels of the tree, 
rather than using new message sets, simply reuse the 2λ ' (Μ) 
message sets produced by partitioning the messages through 
the root. 

The bisections at a given level produce partitions of the set 
of messages that are equal to within one, and this error can 
accumulate in a single channel as we go down the tree. The 
largest value of the error can be as much as lg n, but the actual 
capacities are never exceeded, and so each of the 2λ ' (Μ) 
message sets will be routable in one delivery cycle. • 

Thus, for example, if the capacities are each at least 2 lg n, 
the number of delivery cycles is not worse than 4λ (Μ) . (In 
fact, the divide-and-conquer partitioning of messages can be 
improved to 2λ(Μ) + ο(λ(Μ)).) 

IV. THE HARDWARE REQUIREMENTS OF FAT-TREES 

This section investigates the amount of hardware required 
by a fat-tree. We give a precise description of how the 
switches in the nodes of a fat-tree might be implemented and 
determine how much hardware a node requires. We then 
define the channel capacities of universal fat-trees. Finally, 
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we determine the amount of hardware required to build uni­
versal fat-trees. 

The model for hardware that we use is an extension of 
Thompson's two-dimensional VLSI model [29] by making 
the natural extension to three dimensions. In this model, 
wires occupy volume and have a minimum cross-sectional 
area. Similar three-dimensional models have been studied by 
Rosenberg [26] and Leighton and Rosenberg [16]. 

We first present an implementation of a fat-tree node. As 
was shown in Fig. 3 , most of the switching components are 
contained in the three concentrator switches. According to 
the three-dimensional VLSI model, however, we must also 
be concerned with the amount of wire consumed by the inter­
connection of the components. We shall show that a fat-tree 
node with m incident wires can be built with 0(m) com­
ponents in a box whose side lengths are 0(h\/m), <9(/zVm), 
and 0(Vm/h), for any 1 < λ < V m . The node requires 
constant time to route its inputs. 

We shall need some definitions. An (r, s) concentrator 
graph [21] is a directed acyclic graph with r inputs and s ^ r 
outputs such that any k < s inputs can be simultaneously 
connected to some k outputs by vertex-disjoint paths. An 
(r, s,a) partial concentrator graph is a directed acyclic 
graph with r inputs and s < r outputs and a constant 
0 < a < 1 such that any k < as inputs can be simultane­
ously connected to some k outputs by vertex-disjoint paths. 

Pinsker [21] and Pippenger [22] showed that (r, s) concen­
trator networks can be built with O(r) components using 
probabilistic constructions, but they do not bound the depth 
of the graph, which we wish to be constant. Pippenger [23], 
however, uses another probabilistic argument to construct 
( r , 5 , a ) partial concentrator graphs for sufficiently large r 
where s = 2 r / 3 and a = 3 / 4 . The partial concentrator 
graphs are bipartite (no intermediate vertices between inputs 
and outputs), every input has degree at most 6, and every 
output has degree at most 9. By pasting several of these 
graphs together, outputs to inputs, any constant ratio of con­
centration can be obtained in constant depth. For a given set 
of inputs, the paths through the graph can be set up in poly­
nomial time using network flow techniques or by performing 
a sequence of matchings on each level of the graph. 

We use a partial concentrator graph to construct a good 
concentrator switch. We simply make switching decisions at 
the inputs to each level. These decision bits can be inter­
leaved with the address bits that specify the path of a message 
through the fat-tree. In order to use the off-line routing results 
from Section III, we treat the actual capacity of a channel as 
a times the number of wires, which changes the results by 
only a constant factor. 

We now turn our attention to the physical structure of a 
fat-tree node. A node with m incident wires contains 0(m) 
components. The next theorem gives the physical volume 
necessary to wire the components. 

Lemma 3: A set of m components and external wires can 
be wired together according to an arbitrary interconnection 
pattern to fit in a box whose side lengths are O(hVm), 
O(hVm), and 0(Vm/h), for any 1 < h < Vm. 

Proof: We need to use the fact that in two dimensions, 

any permutation of m inputs and m outputs can be routed in 
0(m2) area, which can be seen by considering a "crossbar" 
layout. Thus, in two dimensions, the wiring of the compo­
nents and external wires can be accomplished by laying all 
components and external wires along a line and routing the 
permutation dictated by the interconnection. 

The construction in three dimensions is essentially that of 
Leighton and Rosenberg [16]. In three dimensions, the ex­
ternal wires and components lie on a face of a box. Any 
permutation of m inputs and m outputs can be routed in a box 
of 0(m3/1) volume where each side has length O ( V m ) . This 
proves the result of the theorem for constant h. 

To extend the result, we use a result of Thompson [29] on 
converting a layout of height h into a layout of height 2. 
Consider slicing the box into slices of height h, and consider 
one such slice. If we expand each of the other two dimensions 
by a factor of ft, the h layers can be superimposed, slightly 
offset from one another. Since this can be done with each of 
the slices simultaneously, the theorem follows. • 

We are now in a position to ascertain the cost of a fat-tree 
implementation based on the capacities of its channels. If the 
capacities of the fat-tree channels are determined arbitrarily, 
the analysis could be messy. For the fat-trees that will be used 
in universality results of Section VI, however, the channel 
capacities can be characterized by the capacity at the root. 
This section defines the channel capacities of a universal 
fat-tree and evaluates the hardware costs of an imple­
mentation. Without loss of generality, and for simplicity, we 
assume in this section that the number of connections to each 
processor in the fat-tree is 1. 

Let FT be a fat-tree on η processors, and let C be the set 
of channels in FT. Consider each node to have a level number 
that is its distance to the root, and give each channel c Ε C 
the same level number as the node beneath it. Thus, for 
example, the root and the channel between the root and the 
external interface are both at level 0. The processors and the 
channels leaving them are at level lg n. If the channel at level 
0 has capacity w, then we say that FT has root capacity w. 

Definition: Let FT be a fat-tree on η processors with root 
capacity w where n2'3 < w < n. Then if each channel c Ε C 
at level k satisfies 

cap(c) 
. \ η w \ 

m i n t 2* ' 2 ^ J 
we call FT a universal fat-tree. 

The capacities of the channels of a universal fat-tree grow 
exponentially as we go up the tree from the leaves. Initially, 
the capacities double from one level to the next, but at levels 
closer than 3 \g(n/w) to the root, the channel capacities grow 
at the rate of V4. 

We can now determine the hardware required by a univer­
sal fat-tree. 

Theorem 4: Let FT be a universal fat-tree on η processors 
with root capacity w where n213 < w < n. Then there is an 
implementation of FT in a cube of volume ν = 0((w lg(n/ 
w))3'2) with 0(n lg(w3/n2)) components. 

Proof: We first establish the component count. For a 
node at level k < 3 lg(n/w), the number of components in 
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the node is 0(w/22kJ3), and the number of nodes at level k is 
2*. Thus, the number of components in all levels between 0 
and 3 \%(n/w) is 

3 lg(n/w) 3 lg(n/w) 

Σ 2kO(w/2W}) = w Σ 0{2m) 

= 0(n) 
since the largest term of the geometric series occurs when 
k = 3 lg(n/w). Nearer the leaves, each level has about the 
same number of components. The total number in the levels 
between 3 \g(n/w) and lg η is 

Σ 2kO(n/2k) = 0(n l g ( w 3 / n 2 ) ) . 
k=3 \g(n/w) 

Thus, the number of components nearer the leaves of the 
fat-tree dominates. 

The volume bound is somewhat more intricate to establish, 
but is essentially the unrestricted three-dimensional layout 
construction given by Leighton and Rosenberg [16]. The 
interested reader is referred to their paper. Similar divide-
and-conquer layout strategies for two dimensions can be 
found in [3], [12], [14], [17], [18], [32]. • 

Theorem 4 gives the volume of a fat-tree in terms of its 
root capacity. For the universality results of Section VI, we 
shall be interested in the reverse. 

Definition: Let FT be a universal fat-tree that occupies 
volume υ and has root capacity &(v2/3/lg(n/v2/3)). Then FT is 
a universal fat-tree of volume v. 

Remark: A universal fat-tree on η processors of volume υ 
must satisfy ν = Ω(η lg η) and ν = 0(nm) to be well de­
fined. By modifying the definition of a universal fat-tree, the 
lower bound can be relaxed to Ω(η), which results in minor 
changes to the bounds quoted in the universality theorem of 
Section VI. 

V. DECOMPOSITION TREES 

The physical implementation of a routing network con­
strains the ability of processors in a parallel supercomputer to 
communicate with one another. The universality theorem 
from Section VI makes essentially one assumption about 
competing networks: at most 0(a) bits can pass through a 
surface of area a in unit time. This assumption can be brought 
to bear on an arbitrary portion of a routing network im­
plementation through the use of decomposition trees, a re­
finement of the graph-theoretic notion of separators [19]. 
Similar results can be found in the VLSI theory literature. 
The results presented here generalize and greatly simplify 
some of the constructions in the literature, notably those in 
[3], [4], and [13]. The generalizations are necessary for the 
proof of the universality theorem. 

A routing network R interconnecting a set Ρ of processors 
has a [w 0, wu · · ·, wr] decomposition tree if the amount of 
information that can enter or leave the set Ρ of processors 
from the outside world is at most w0 bits per unit time; Ρ can 
be partitioned into two sets P0 and P{ such that the amount of 
information that can enter or leave each set is at most wx bits 

per unit time; each of P0 and Px can be partitioned into two 
sets such that the bandwidth to and from each of the four sets 
is at most w2\ and so on, until every set at the rth level has 
either zero or one processors in it. When the bandwidth de­
creases by a constant amount from one level to the next, we 
shall adopt a shorthand notation. We shall say that R has a 
(νν ,α ) decompos i t i on t ree for 1 < a ^ 2 if it has a 
[u>, w / a , vv/a 2 , · · · , 0 ( 1 ) ] decomposition tree. (For VLSI 
graph layouts, there is a similar notion called bifurcators 
[3],[13].) 

Theorem 5: Let R be a routing network that occupies a 
cube of volume v. Then R has an (0(υ2/3), Ψ4) decomposition 
tree. 

Proof: The cube has side length and surface area 
٧υ 2 7 3 . Imagine a rectilinearly oriented plane that splits the 
cube into two equal boxes, each occupying volume υ / 2 . This 
cutting plane naturally partitions the processors into two sets. 
Partition each of the two boxes by repeating this procedure 
with a plane perpendicular to the first. Continuing now in the 
third dimension yields eight cubes. Repeat this procedure 
until each box contains either zero or one processors. 

The volume of each of the 2' boxes generated by the ith cut 
is u /2 ' , and the surface area is at most 4ψ4(υ/2)2/3. Let γ be 
the constant factor by which the bandwidth of information 
transfer differs from the surface area. Then the routing net­
work R has a (4 Λ ?/٠ γ υ 2 7 3 , ^VA) decomposition tree. • 

A decomposition tree generated by the cutting plane meth­
od can be unbalanced in the sense that the number of pro­
cessors lying on either side of a given cut may be unequal. 
Following the approach of Bhatt and Leighton [3], we define 
a balanced decomposition tree to be a decomposition tree in 
which the number of processors on either side of a given 
partition is equal, to within one. We shall show that a bal­
anced decomposition tree can be produced from an unbal­
anced one. 

First, however, we shall need two combinatorial lemmas. 
The first, which deals with the partitioning of strings of 
pearls, is typical of lemmas proved in the VLSI theory 
literature. 

Lemma 6: Consider any two strings composed of even 
numbers of black and white pearls. By making at most two 
cuts, the pearls can be divided into two sets, each containing 
at most two strings, such that each set has exactly half the 
pearls of each color. 

Proof:2 Call the strings L and 5 for "long" and "shor ty 
We use a continuity argument to show that two sets A and A 
satisfying the conditions of the lemma can always be pro­
duced. Place the strings L and 5 end-to-end in a circle, as is 
illustrated in Fig. 4(a). Let A be the set of pearls comprising 
the shaded half of the circle in Fig. 4(b), and let A be the set 
of pearls in the other half. Suppose without loss of generality 
that the set A contains too many black pearls and set A 
contains too few. We shall show how to transform set A so 
that it occupies the initial position of set A. The trans­
formation consists of a sequence of moves such that for each 

2Thanks to G. Miller of USC, who provided this argument, which is simpler 
than our original algebraic proof. 
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(c ) (d) 

(e) (f) 
Fig. 4. The partitioning argument, (a) The two strings L and S laid end-to-end 

in a circle, (b) The initial position of set A. (c)-(f) The transformation of A 
into A. 

move, the number of blacks within set A changes by at most 
one. Since set A starts out with too many black pearls and 
ends with too few, by continuity there will be a position in the 
middle where A has exactly half the black pearls. Further­
more, because A has half the total number of pearls, it will 
also have half the white pearls. 

The transformation begins by rotating set A counter­
clockwise, as shown in Fig. 4(c), until it reaches the position 
shown in Fig. 4(d). Then, set Λ is broken into two pieces and 
the tailing piece is rotated clockwise until it meets up with the 
leading piece on the other side, shown in Fig. 4(e) and (f). 
The position of set A is now the initial position of set A. As 
can be verified, at all times during the transformation, sets A 
and A each contain at most two strings. • 

Lemma 7: Let Τ be a complete binary tree drawn in the 
natural way with leaves on a straight line, and consider any 
string sofk consecutive leaves. Then there exists a forest F 
of complete binary subtrees of Τ such that 1) the leaves ofF 
are precisely the leaves ins, 2) there are at most two trees of 
any given height, and 3) the height of the largest tree is at 
most Ig k. 

Proof: The forest is constructed from the maximal com­
plete subtrees of Τ whose leaves lie only in s. • 

Theorem 8: Let R be a routing network on η processors 
that has a [w0, w]t · · ·, wr] decomposition tree T. Then R has 
a [wo,w't, · · · , w[ign]] balanced decomposition tree Τ' where 

r 

w\ = 4 Σ wk. 
k=i 

Proof: Draw the decomposition tree Τ in the natural 
way with the 2r leaves on a line. Each leaf either contains a 
processor or else it is empty. If the leaf contains a processor, 
color it black; otherwise, color it white. Considering the line 

of processors as a string of black and white pearls, as in 
Lemma 6, we can cut the string in at most two places such 
that the pearls are divided into two sets, each containing at 
most two strings, such that each set has exactly half the pearls 
of each color. This partition represents the first level in the 
balanced decomposition tree Γ ' . 

Recursively partition each of the two sets using Lemma 6. 
At each step, the number of black pearls (processors) is split 
evenly in a set, and each set contains at most two strings 
(consecutive leaves from the decomposition tree T). Thus, 
at level \\g n"|, each set (leaf of T') contains at most one 
processor. 

It remains to prove the bound on the rates w[ of informa­
tion transfer in and out of each subtree of the balanced de­
composition tree T'. Each subtree of Γ ' corresponds to at 
most two strings of leaves from the original decomposition 
tree T. From Lemma 7, these two strings correspond to a 
forest of complete binary trees with at most four trees of a 
given height. All external communication of a complete bi­
nary subtree of a decomposition tree occurs through the 
surface corresponding to its root. Thus, the external commu­
nication per unit time of a subtree of Τ' is bounded by the sum 
of bandwidths from the roots of the corresponding complete 
binary subtrees of T. • 

Corollary 9: Let R be a routing network that has a (w,a) 
decomposition tree for 1 < a < 2 . Then S has a 
(4(a/a — l)w, a) balanced decomposition tree. 

Proof: The summation in Theorem 8 becomes a geo­
metric series. • 

VI. UNIVERSALITY OF FAT-TREES 

We now show that a fat-tree is universal for the amount of 
interconnection hardware it requires in the sense that any 
other routing network of the same volume can be efficiently 
simulated. From a theoretical point of view, we define 
"efficiently" as meaning at most poly logarithmic slowdown. 
Polylogarithmic time in parallel computation corresponds to 
polynomial time for sequential computation. 

Some may argue that polylogarithmic slowdown may not 
be efficient if the exponent of the logarithm is large. The 
ability of one parallel computer to simulate another, how­
ever, merely gives confidence in the general-purpose nature 
of the computer. The loss of efficiency in the simulation is 
not felt if the parallel computer is programmed directly. 

Many of the networks currently being built are not univer­
sal (for example, two-dimensional arrays, simple trees, or 
multigrids). These networks exhibit polynomial slowdown 
when simulating other networks. Thus, they have no the­
oretical advantage over a sequential computer which can 
easily simulate a network with polynomial slowdown. Inter­
estingly, hypercube-based networks are universal for volume 
Θ(η 3 / 2 ) , but as we have observed, they do not scale down to 
smaller volumes. 

Theorem 10: Let FT be a universal fat-tree on a set of η 
processors that occupies a cube of volume v, and letR be an 
arbitrary routing network on a set of η processors that also 
occupies a cube of volume v. Then there is an identification 
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of the processors in FT with the processors of R with the 
following property. Any message set Μ that can be delivered 
in time t by R can be delivered by FT (off-line) in time 
0(t lg3 n). 

Proof: By Theorem 5, the routing network R has an 
(O^3), ^ 4 ) decomposition tree, and hence by Corollary 9, 
it also has an (0(vm),^A) balanced decomposition tree. 
Identify the processors at the leaves of the balanced decom­
position tree of R in the natural way, with the processors at 
the leaves of the fat-tree FT. 

By assumption, routing network R can deliver all the mes­
sages in a message set Μ in time t. In unit time, at most 
0 (u 2 / 3 / 2 2 A / 3 ) messages can enter or leave a subtree rooted at 
level k in /Ts balanced decomposition tree. Thus, in t time, 
the total number of messages that can enter or leave a subtree 
rooted at level k is 0(tv2/3/22k/3). 

There is a second bound on the transfer of information in 
and out of a subtree of the balanced decomposition tree ofR. 
The number of messages that can enter or leave a single 
processor in time t is 0(t) since the number of connections 
to a processor is constant. Since there are at most n/2k pro­
cessors in a subtree rooted at level k, the total number of 
messages that can enter or leave this subtree in t time is 
0(tn/2k). 

We now compute an upper bound on the load factor λ(Μ) 
that Μ puts on the fat-tree FT. Let c be a channel at level k 
in FT. We have just seen that the number load(M, c) of mes­
sages of Μ that must go through c is 0(tv2/3/22k/3) and 
0(tn/2k). Since FT is a universal fat-tree with root capacity 
θ(υ*3/^(η/υ*3)), the capacity of c is 

cap(c) = m i n { | ^ | , e ( 2 2 , 3 ^ / ^ s ) ) 

Thus, the load factor on c due to Μ is 

A(M,c) = 0(t l g d i / V 3 ) ) , 

and the load factor on the whole fat-tree is 

A(A#) = 0(t lg(n/v2/3)). 

The off-line routing result from Theorem 1 says that 
0(t Igin/v213) lg n) delivery cycles are sufficient to route all 
the messages in M. Since the fat-tree can execute an off-line 
delivery cycle in 0 ( lg n) t ime, the result follows. • 

The 0 ( lg 3 n) factor lost in simulation is attributable to the 
channel capacities, the routing algorithm, and the switching. 
Of these three, only the last, the 0( lg n) switching time for 
a delivery cycle, seems to be a necessary cost. 

The first 0 ( lg n) factor (actually 0 ( lg (n /u 2 / 3 ) ) ) is because 
a fat-tree of volume υ has a root capacity of Oiv^/Xg^/v213)). 
This logarithmic factor vanishes for the simulation of net­
works that have only slightly less (Oiv/lg^n/v213))) volume. 
We have chosen to put all the simulation expense in time so 
that the comparison will be equal hardware versus equal 
hardware. 

The second 0(\g n) factor is lost by the off-line routing 
algorithm. In fact, we have recently discovered [8] that off­

line routing in 0(λ(Μ) + lg η lg lg n) delivery cycles is 
always possible. Moreover, if we assume that each processor 
has 9 ( l g n) connections, as is required by a Boolean hyper­
cube, and each channel has capacity H(lg n), Corollary 2 
from Section III allows us to route in 0(λ(Μ)) delivery 
cycles. 

An important application of the universality of fat-trees is 
to the simulation of fixed-connection networks, that is, net­
works that have direct connections between processors. Here 
we relax the technical assumption in the definition of a uni­
versal fat-tree to allow the processors to have a given number 
d of connections to the routing network, instead of 1. Such 
a universal fat-tree of volume 0(v X^in/v213)) on η pro­
cessors can simulate an arbitrary degree d fixed-connection 
network of volume υ on η processors with only 0( lg n) time 
degradation. The idea is that the channel capacities of the 
universal fat-tree are sufficiently large that the connections 
implied by the network can be represented as a one-cycle 
message set, which requires 0 ( lg n) time to be delivered. 

High-volume universal fat-trees can be compared to clas­
sical permutation networks, which all require Ω(η312) volume. 
A universal fat-tree on η processors with 0(n3'2) volume can 
route an arbitrary permutation off-line in time 0 ( lg n). Up to 
constant factors, this is the best possible bound (assuming 
bounded-degree processors), but it is also achievable, for 
instance, by Benes networks [2], [34] or by on-line sorting 
networks [1], [15]. 

A natural extension to the off-line routing results presented 
here, and indeed, the one that motivates the entire paper, is 
the problem of on-line routing in fat-trees. Not surprisingly, 
there are universal fat-trees for on-line routing. In results to 
be reported elsewhere [8] we have discovered a randomized 
routing algorithm that delivers all messages in 0(λ(Μ) + 
lg η lg lg ή) delivery cycles with high probability [8], but 
the nodes of the fat-tree have somewhat different structure 
from the design given here. Using this result and essentially 
the construction given in this paper, one can obtain an on-line 
analog to Theorem 10, except with an 0 ( l g 3 η lg lg n) time 
degradation. We anticipate further research will improve 
this bound. 

VII. CONCLUDING REMARKS 

Universality has been studied more generally in the paral­
lel computation literature. Valiant [33] and Valiant and 
Brebner [31] have discovered universal routing schemes for 
large-volume networks. Galil and Paul [7] have proposed a 
general-purpose paral lel processor based on the cube-
connected-cycles network [25] that can simulate any other 
parallel processor with only a logarithmic loss in efficiency. 
Valiant [30] has shown that there are classes of universal 
Boolean circuits. A universal circuit of a given size can be 
programmed to simulate any circuit whose size is only 
slightly smaller. Fiat and Shamir [6] have proposed a uni­
versal architecture for systolic array interconnections. 

Universal fat-trees are parameterized not only in the num­
ber of processors, but also in volume, which is indirectly a 
measure of communication potential. By considering arbi-
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trary networks in terms of these two parameters, we have 
seen that the one fat-tree architecture is near-optimal 
th roughou t the en t i r e r ange of the p a r a m e t e r s . For 
communication-limited engineering situations, one need not 
necessarily retreat to special-purpose devices in order to 
compute efficiently in parallel. 

Fat-trees have the advantage that they are a robust engi­
neering structure. In principle, one need not worry about the 
exact capacities of channels as long as the capacities exhibit 
reasonable growth as we go up the tree. As a practical matter, 
one should build the biggest fat-tree that one can afford, and 
the architecture automatically ensures that communication 
bandwidth is effectively utilized. Another feature of fat-trees 
is that algorithms are the same no matter how big the fat-tree 
is. Code is portable in that it can be moved between an 
inexpensive computer and a more expensive one. Finally, 
the root channel offers a natural high-bandwidth external 
connection. 

Although universal fat-trees have many desirable proper­
ties, there are many issues in the design of a routing network 
that we have not faced directly. For example, despite our 
concern for wirability, we have not presented a practical 
packaging scheme. Possibly, the packaging techniques for 
trees from [4] and [18] can be exploited. The constraints to be 
faced in packaging, however, will only be more stringent 
than the surface area constraint given in Assumption L3. We 
have attempted to deal with "pin boundedness" in a simple 
mathematical model, and our results should generalize to 
more complicated packaging models. 

Another issue that we have not addressed is how messages 
should be sent in the network. The choice of the bit-serial 
approach in Section II has the advantage that the hardware is 
cheaper, but we may be paying in the performance of the 
routing algorithm. We also assumed the architecture was 
synchronized by delivery cycle. Presumably, fat-tree archi­
tectures can be built with different design decisions. 

Whether the notion of universal parallel supercomputers is 
consistent with engineering reality, however, remains an 
open question. Independent of routing network issues, there 
are many other problems that must be solved if abstract 
η-processor parallel supercomputers are to become a reality. 
For example, problems of maintenance, fault tolerance, 
clock distribution, and reliable power supply must be solved. 
The hardware mechanisms needed for synchronization and 
instruction dis t r ibut ion, which are s imple for s ingle-
processor machines, may be sufficiently complicated to over­
whelm the advantages of having many processors. 

But the largest problem that must be solved in parallel 
supercomputing seems to us to be the problem of pro­
gramming the system with the concerns of both programming 
abstraction and algorithmic integrity (computational re­
sources are not free). A supercomputer should not be a mere 
supercalculator (good at one restricted algorithm). It should 
have the power to efficiently execute many different parallel 
algorithms and to easily combine the results of separate par­
allel computations. A universal machine has the power, not 
just of any other machine, but of all other machines. 
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